Proceedings of the International *fib* Symposium on the
Conceptual Design of Structures
held in Attisholz Areal, Switzerland, September 16-18, 2021

edited by:
Corentin FIVET,
Pierluigi D’ACUNTO,
Miguel FERNÁNDEZ RUIZ,
Patrick Ole OHLBROCK
introduction

06 organizing institution
07 symposium
08 supporting associations
09 sponsors
10 organizing committee
11 organization collaborators
12 scientific committee
14 invited speakers
15 themes & contributions
organizing institution

The conference is organised by the Swiss group of the International Federation for Structural Concrete (fib).

The fib, Fédération internationale du béton, is a not-for-profit association formed by 41 national member groups and approximately 1000 corporate and individual members. fib’s mission is to develop at an international level the study of scientific and practical matters capable of advancing the technical, economic, aesthetic and environmental performance of concrete construction.

The fib was formed in 1998 by the merger of the Euro-International Committee for Concrete (the CEB) and the International Federation for Pre-stressing (the FIP). These predecessor organizations existed independently since 1953 and 1952, respectively. Today, the fib is the main international organization dedicated to concrete construction.

The fib-CH group achieves fib’s goals in Switzerland by locally disseminating information and knowledge obtained through the association’s international activities.
The conceptual design of structures is at the heart of the design process and when the most fundamental and influential decisions are taken for a project. It merges experience, intuition, tradition, site constraints, technical solutions and, above all, the genius and sensitivity of the designers.

The aim of the International fib Symposium on Conceptual Design of Structures 2021, which continues a series of symposia opened by fib and whose first edition was held in Madrid in 2019, is to generate a fruitful exchange event for academics and practitioners from engineering, architecture and other disciplines on the topic of the conceptual design of structures. The focus is placed on experiences made particularly during the design process. The discussions reflect how a project emerges, how design decisions are taken, how responsibilities are distributed, how obstacles and constraints are handled, how fundamental design principles are applied and the way the individual members of the design team collaborate.

Taking place in September 16-18, 2021, the Symposium follows an hybrid in-person/online format. The in-person events take place at the Attisholz Areal, close to the city of Solothurn (Switzerland). This reconverted industrial venue, which was originally used as a cellulose factory, witnesses the tremendous architectural potential for reuse of existing structures. More information on the venue and its access is available at https://www.attisholz-areal.ch/.
supporting associations
sponsors
organizing committee

The International fib Symposium on Conceptual Design of Structures 2021 is jointly organized by the Laboratory for Structural Concrete Engineering at EPFL Lausanne (Professor Aurelio Muttoni) and the Chair of Structural Design at ETH Zurich (Professor Joseph Schwartz) in collaboration with the fib (International Federation for Structural Concrete):

Aurelio Muttoni
Muttoni et Fernandez Ingénieurs Conseils, Switzerland
EPFL Lausanne, Switzerland

Joseph Schwartz
Dr. Schwartz Consulting, Switzerland
ETH Zürich, Switzerland

Pierluigi D’Acunto
Technische Universität München, Germany

Miguel Fernández Ruiz
Muttoni et Fernandez Ingénieurs Conseils, Switzerland
EPFL Lausanne, Switzerland

Patrick Ole Ohlbrock
ETH Zürich, Switzerland
The symposium is made possible with the strong support from members of the Swiss Society for the Art of Engineering, members of the fib-YMG [CH] and the following list of people from ETH and EPFL:

Alessandro Tellini: Site Planning and Exhibition
Giulia Boller: Site Planning, Exhibition and Technical Tours
Federico Bertagna: Site Planning
Davide Tanadini: Site Planning
Shuaizhong Wang: Site Planning
Oskar Brunner: Site Planning and Exhibition
Ursula Jaray: Catering and Technical Tours
Philippe Hilger: Registration Desk
Yvonne Buehl: Financial Aspects
Diego Hernandez: Master of Webinar
Enrique Corres: Master of Webinar
Jan Brütting: Logistics
Maxence Grangeot: Proceedings
scientific committee

Corentin Fivet (EPFL Lausanne, Switzerland)
chair of the scientific committee

Sigrid Adrianssens (Princeton University, USA)
György L. Balázs (Budapest University of Technology and Economics, Hungary)
Paolo Beccarelli (University of Nottingham, UK)
Alejandro Bernabeu (Bernabeu Ingenieros – Universidad Politécnica de Madrid, Spain)
Kai-Uwe Bletzinger (Technische Universität München, Germany)
Philippe Block (ETH Zürich, Switzerland)
Annette Bögle (HafenCity Universität Hamburg, Germany)
Jan Brütting (EPFL Lausanne, Switzerland)
Pepa Cassinello (Universidad Politécnica de Madrid, Spain)
Juan José Castellón González (xmade, Switzerland – Rice University, USA)
Jürg Conzett (Conzett Bronzini Partner, Switzerland)
Hugo Carres (Universidad Politécnica de Madrid, Spain)
Pierluigi D’Acunto (Technische Universität München, Germany)
Catherine De Wolf (Technical University Delft, Netherlands – ETH Zürich, Switzerland)
Kathrin Dörfler (Technische Universität München, Germany)
Albert de La Fuente (Universitat Politécnica de Catalunya, Spain)
Damien Dreier (Structurame, Switzerland)
Miguel Fernández Ruiz (Muttoni et Fernandez Ingénieurs Conseils – EPFL Lausanne, Switzerland)
Emanuela Ferrari (Ferrari Gartmann, Switzerland)
Rui Furtado (Afaconsult, Portugal)
Roberto Gargiani (EPFL Lausanne, Switzerland)
Paul Gauvreau (University of Toronto, Canada)
Patricia Guaita (EPFL Lausanne, Switzerland)
Gabriele Guscetti (Ingeni, Switzerland)
Norman Hack (Technische Universität Braunschweig, Germany)
John Harding (University of Reading, UK)
Thorsten Helbig (Knippers Helbig, Germany – The Cooper Union New York, USA)
Hannes Hofmann (ETH Zürich, Switzerland)
Lukas Ingold (ETH Zürich, Switzerland)
Tullia Iori (Università degli Studi di Roma Tor Vergata, Italy)
Ornella Iuorio (University of Leeds, UK)
Akio Kasuga (Sumitomo Mitsui Construction, Japan)
Walter Kaufmann (ETH Zürich, Switzerland)
Harald Kloft (Office for Structural Design – Technische Universität Braunschweig, Germany)
Jan Knippers (Jan Knippers Ingenieure – Universität Stuttgart, Germany)
Marina Konstantatou (Foster and Partners – University of Cambridge, UK)
Neven Kostic (Dr. Neven Kostic, Switzerland)
Toni Kotnik (Aalto University, Finland)
Carlos Lázaro (Universitat Politècnica de València, Spain)
Massimo Laffranchi (Fürst & Laffranchi, Switzerland)
Silke Langenberg (ETH Zürich, Switzerland)
Julian Lienhard (structure – Universität Kassel, Germany)
Miguel Lourenço (JSJ Structural Engineering – Instituto Politécnico Setúbal, Portugal)
Maléna Bastien Masse (EPFL Lausanne, Switzerland)
Allan McRobie (University of Cambridge, UK)
Marisela Mendoza (Nottingham Trent University, UK)
Philippe Menetrey (INGPHI, Switzerland)
Corinna Menn (Corinna Menn, Switzerland)
Andrea Micheletti (Università degli Studi di Roma Tor Vergata, Italy)
Mario Monotti (Studio di ingegneria Dr. Mario Monotti – Università della Svizzera Italiana, Switzerland)
Caitlin Mueller (Massachusetts Institute of Technology, USA)
Aurelio Muttoni (Muttoni et Fernandez Ingénieurs Conseils – EPFL Lausanne, Switzerland)
Patrick Ole Ohlbrock (ETH Zürich, Switzerland)
Tor Ole Olsen (Olav Olsen, Norway)
Dimitrios Papastergiou (Federal Roads Office, Switzerland)
Andrea Pedrazzini (Ingegneri Pedrazzini Guidotti, Switzerland)
Christian Penzel (Penzel Valier, Switzerland)
Mariana Popescu (ETH Zürich, Switzerland)
Olga Popovic Larsen (Royal Danish Academy, Denmark)
Tivadar Puskas (Schnetter Puskas, Switzerland)
Francesco Ranaudo (ETH Zürich, Switzerland)
Mario Rinke (Universiteit Antwerpen, Belgium)
Mike Schlaich (Schlaich Bergermann Partner – TU Berlin, Germany)
Joseph Schwartz (Dr. Schwartz Consulting – ETH Zürich, Switzerland)
Paul Shepherd (University of Bath, UK)
Fernando Stucchi (EGT Engenharia, Brazil)
Peter Tanner (Instituto Eduardo Torroja – Cesma Ingenieros, Spain)
Andreas Taras (ETH Zürich, Switzerland)
Leonardo Todisco (Universidad Politécnica de Madrid, Spain)
Elisa Valero (Universidad de Granada, Spain)
Jan Vitek (Metrostav, Czech Republic)
Yves Weinand (Bureau d’Études Weinand, Belgium – EPFL Lausanne, Switzerland)
Cristina Zanini Barzaghi (Studio Cristina Zanini Sagl, Switzerland)
Denis Zastavni (Université catholique de Louvain, Belgium)
Bin Zhao (Tongji University, China)
invited speakers

Bill Baker (Skidmore, Owings & Merrill, USA – University of Cambridge, UK)
Alejandro Bernabeu (Bernabeu Ingenieros – Universidad Politécnica de Madrid, Spain)
Jürg Conzett (Conzett Bronzini Partner, Switzerland)
Hugo Corres Peiretti (FHECOR Ingenieros Consultores – Univ. Poli. de Madrid, Spain)
Lee Franck (RealtyImpact, Luxembourg)
Paul Gauvreau (University of Toronto, Canada)
Tullia Iori (Università degli Studi di Roma Tor Vergata, Italy)
Mitsuhiro Kanada (Arup – Tokyo University of The Arts, Japan)
Akio Kasuga (Sumitomo Mitsui Construction, Japan)
Christian Kerez (Christian Kerez – ETH Zürich, Switzerland)
Jeannette Kuo (Karamuk Kuo Architects, Switzerland – Harvard University, USA)
Elli Mosayebi (Edelaar Mosayebi Inderbitzin Architekten – ETH Zürich, Switzerland)
Aurelio Muttoni (Muttoni et Fernandez Ingénieurs Conseils – EPFL Lausanne, Switzerland)
Cecilia Puga (Cecilia Puga Architects – Pontificia Universidad Católica, Chile)
Mike Schlaich (Schlaich Bergermann Partner – Technische Universität Berlin, Germany)
Joseph Schwartz (Dr. Schwartz Consulting – ETH Zürich, Switzerland)
Knut Stockhusen (Schlaich Bergermann Partner, Germany)
Jane Wernick (EngineersHRW, UK)
themes & contributions

The contributions in these proceedings are organized according to the four main topics of the Symposium, as follows:

exposed or concealed: the interaction between structure and architecture.
How does structural design shape the overall concept?

challenging gravity: contemporary structures for our built environment.
How can structures challenge gravity with new systems, materials and construction technologies?

rediscovering the past: forgotten structures and concepts to rethink the future.
How can projects and concepts from the past be a valuable source of inspiration and knowledge for future projects?

behind the curtain: the creative role of structural engineers and architects in the 21st century.
Which responsibilities do structural engineers and architects face and which skills will they require in the future with respect to society, economy, and environment?

Authors had the choice between submitting a paper or a video. Papers are provided in full in these proceedings. Videos and a digital version of the proceedings are available on the website of the Swiss Society for the Art of Engineering:

https://www.ingbaukunst.ch/de/veranstaltungen/conceptual-design-of-structures/
exposed or concealed

general considerations:

23 Embodied structural ambivalence: a neurophysiological perspective on structural expression
Shuaizhong Wang, Toni Kotnik

31 Design principles providing solutions to multiple engineering tasks
Elio Ravegglia, Massimo Laffranchi, Armand Fürst, Diego Somaini, Balz Friedli

41 Designing for innovation: from model-use to thinking in models
Johanna Ruge, Annette Bögle

49 On sustainable structural design
Neven Kostic

51 Forces behind the scene: concealed structural systems in large-span building structures
Andreas Pürgstaller, Josef Taterner, Konrad Bergmeister, Andreas Taras

59 The matter of form in structural invisible components: role of foundations
Gino Baldi

67 Structuring a common ground: vectors, notes & stories
Tiphaine Abenia, Agathe Mignon, Camille Fauvel

75 Purposeful transgressions: the role of the structure in the making of new space
Viktoriya Maleva, Federico Bertagna

buildings:

83 To show and integrate instead of hiding – the supporting structure of the Plantahof Auditorium
Patrick Gartmann, Emanuela Ferrari

91 The new retirement home in Giornico (CH)
Roberto Guidotti

93 Building for the Elysée and Mudac museums, Lausanne
Rui Furtado, Miguel Pereira

101 The structural design of buildings as an articulation of bio-climatic principles and energy savings ‘La nouvelle Ecole Normale Supérieure de Paris-Saclay’, Gif sur Yvette (91) France
Olivier Canat, Thomas Plasse

111 Structural necessity as a change for architecture:
the seismic retrofit of Rätia center in Davos (CH)
Roberto Guidotti

113 Structure as a facade – a structure can more than bear
Emanuela Ferrari, Patrick Gartmann

121 From exposed concrete vaults to concealed steel trusses:
conceptual design as a creative design act rather than a phase
Tilke Devriese, Maarten Van Den Driessche, Jan Belis

129 FPM41. Office building in Lisbon
Miguel Sêrio Lourenço, João F. Almeida, José N. Camara

137 When the constraints design the structure: ‘la Maison de l’Ordre des Avocats’ in Paris, France
Olivier Canat, Pierre Chassagne
roof structures:

147 Smart Vierendeel: TRUMPF showroom, Chicago
Florian Meier, Thorsten Helbig

153 All-in! – design and architecture with prefabricated concrete elements
Jan Mittelstädt, Boris Peter

161 Design experience of a thin steel frame folded plate envelope for the new railway station of Vasco de Quiroga
Carlos Llopis Camps, Santiago Ferri Mateu

169 New Uppsala’s town hall’s glass roof: a design challenge materialized through innovation
Sergio González Duarte, Josu Goñi

177 Layers of transparency and functionality: Academy Museum of Motion Pictures, L.A.
Florian Meier, Thorsten Helbig

185 Textile reinforced concrete canopies
Jan Mittelstädt, Boris Peter

193 Conceptual design of the structure of architectural pergolas for La Sagrera multimodal transfer center in Barcelona
Santiago Ferri Mateu, Carlos Llopis Camps

201 F.E.W. structural prototypes: retrofitting residential buildings with ecological rooftop infrastructures
Juan José Castellon González, Pierluigi D’Acunto, Federico Bertagna, Sebastián López Cardozo

209 Structure as source of syntactic ambiguity in contemporary architecture
Mauricio Morales-Beltran, Pinar Engûr, Nazlı Hilal Sansayın

challenging gravity

special structures:

221 The new Ponte Cabbiera Chapel in Val Malvaglia
Martino Pedrozzi

223 MAAT - Museum of Art, Architecture and Technology, Lisbon
Rui Furtado, Miguel Pereira

231 Mohamed VI Tower in Rabat
Alejandro Bernabeu Larena, Youri Carlson, Javier Gomez Mateo, Benoît Olislager, Isabel Saez Alonso, Hans Verbraken

241 Conceptual design in high-rise buildings based on the competition submission “Hufelandstrasse” in Munich
Florian Kaim, Martin Stumpf

249 Supporting the giant 23,000 tonne ITER Tokamak nuclear fusion reactor
Fernando Rueda, Didier Combescure, David Alonso, Luis Maqueda, Carlos Meléndez, Victor Dominguez

257 Examples of how solutions for difficult problems were found
Fernando R. Stucchi

269 Challenging gravity: the beauty of buoyancy
Tor Ole Olsen
bridges:

277 Infrastructure design: the benefits of contextual and conceptual considerations
Philippe Menétrey

287 Principles, structures, and processes: engineering & architecture collaboration in footbridge design
Alejandro Bernabeu Larena, Jorge Bernabeu Larena, Francisco Burgos Ruiz, Ginés Garrido Colmenero

297 Balance between design and construction
Jan L. Vítek

305 *E pluribus unum*: hybrid structural solutions for next-generation bridge designs
Andreas Taras, Josef Taferner, Konrad Bergmeister

313 Conceptual design of HPFRC and UHPFRC road girder bridges
Rafael Ruíz, Leonardo Todisco, Hugo Corres

321 The first pearl-chain arch bridge
Philip Halding

329 Conceptual design of the concrete railway bridges on the Púchov Žilina corridor
Jaroslav Halvonic, Viktor Borzovic, Ludovit Fillo

337 Conceptual design of small footbridges
Peter Paulík, Katarína Gajdosová, Lucia Majtánová

345 Durable and sustainable conception and refurbishment of road bridges
Eckart Hars

359 The widening & retrofitting investigation for a reinforced concrete voided slab bridge deck
Daniel Govender

367 Carbon reduction in bridge design
Lara Rueda, Spyros Kamilalis

375 Trimming the structural ‘fat’: the carbon cost of overdesign in bridges
Oliver Budd, Will Hawkins

rediscovering the past

387 Beyond the spherical solution: the contractor’s contribution to the roof of the Sydney Opera House
Luciano Cardellicchio, Paolo Stracchi, Paolo Tombesi

395 An ambiguous order: the structural concept and design of Juha Leiviskä
Fangjie Xie, Toni Kotnik

403 Form and forces of dry stone trulli and its influence on contemporary structural design
Shayani Fernando

411 Focus on the very first steel bridge in France, its reuse, and its designer Emile Cheysson
Pierre-Yves Ollivier

419 Structure and architecture in dialogue: design micronarratives of the N2 motorway (1961-86)
Ilaria Giannetti

427 Overview of the historical reinforced concrete bridges in Slovakia – inspirations for modern structures
Peter Paulík, Lucia Majtánová, Katarína Gajdosová

435 Railway bridge engineering: lessons learned over the past 100 years
Franz Forstlechner, Norbert Friedl, Nikolaus Prinz
behind the curtain

design methods and tools:

445 A new tool for the conceptual design of structures in equilibrium based on graphic statics
Yuchi Shen, Pierluigi D’Acunto, Jean-Philippe Jasienski, Patrick Ole Ohlbrock

447 An interactive implementation of algebraic graphic statics for geometry-based teaching and
design of structures
Ricardo Maia Avelino, Juney Lee, Tom Van Mele, Philippe Block

455 Component reuse in structural design: emerging practices and tools for the circular economy
Jan Brütting, Patrick Ole Ohlbrock, Pierluigi D’Acunto, Jonas Warmuth, Corentin Fivet

457 Algorithmic circular design with reused structural elements: method and tool
Yijiang Huang, Latifa Alkhayat, Catherine De Wolf, Caitlin Mueller

469 Connecting lines: investigating the potential of ruled surface structures for circular construction
Markus Hudert

477 Sustainable seismic design of bridges inspired by ancient temples
Natalia Reggiani Manzo, Michalis F. Vassiliou

485 Algorithm-aided structural-optimization strategies for the design of variable cross-section beams
Laura Sardone, Alessandra Fiore, Rita Greco, Carlo Moccia, Nikos D. Lagaros, Domenico De Tommasi

493 Robustness-oriented conceptual design of precast concrete frame structures
Simone Ravasini, Beatrice Belletti, Emanuele Brunesi, Roberto Nascimbene, Fulvio Parisi

501 Conceptual Design of Fiber Reinforced Concrete Elements
Giovanni Plizzari

503 R-funicularity for shells’ shape optimization
Gloria Rita Argento, Stefano Gabriele, Valerio Varano

manufacturing:

511 A prototype pavilion in textile reinforced concrete: a tool for research and pedagogy
Patricia Guaita, Raffael Baur, Miguel Fernández Ruiz, David Fernández-Ordóñez

519 Pushing concrete material usage to the limit: weight optimised, 3D printed concrete girders with external reinforcement
Nadine Stoiber, Benjamin Kromoser

529 Structural design possibilities of reinforced concrete beams using eggshell
Lukas Gebhard, Joris Burger, Jaime Mata-Falcon, Ena Lloret-Fritschi, Fabio Gramazio, Matthias Kohler, and Walter Kaufmann

531 Inspiration of interlocking wooden puzzles in precast buildings concrete construction
Abtin Baghadi, Annahita Meshkini

539 Robotically-fabricated nexorades from whole timber
Petras Vestartas, Aryan Rezaei Rad, Yves Weinand

547 The ice shell project
Anthony Haag, Oliver Burch, Damian Ineichen, Philippe Block, Francesco Ranaudo
rediscovering the past
Beyond the spherical solution: the contractor’s contribution to the roof of the Sydney Opera House

Luciano Cardellicchio, Paolo Stracchi, Paolo Tombesi
luciano.cardellicchio@unsw.edu.au, paolo.stracchi@sydney.edu.au, paolo.tombesi@epfl.ch

Abstract
The history of the design decisions directly related to the construction of the Sydney Opera House remains largely anecdotal. A rich group of items recently discovered in Australia may now start filling this gap, as documents brought to light include the drawings issued by the general contractor to build the concrete formwork for the shells, drawings of the temporary structures and falsework, site images, and contractor’s notes. All in all, the drawings display sophisticated combinatory solutions for attaining the structural form required whilst introducing repetition and flexibility in the making of the discrete pieces. While suggesting a remarkable combination of manufacturing and structural shrewdness, these blueprints call into question the canonical history of the building roof’s famous ‘sails’ and the rhetoric of the ‘spherical solution’ used to arrive at them.

1 Introduction
The Sydney Opera House is the object of a prodigious hagiography of the personalities involved in its realization and their legendary querelles. Publications on the building rely on the memoirs and actions of three major actors: Jørn Utzon (the architect of Stage 1 and 2, 1958-1966), Ove Arup (the structural engineer and project manager of Stage 2, 1959-1973), and Peter Hall (the architect and project manager of Stage 3, 1966-1973) [1]–[5]. By contrast, and somewhat surprisingly for a building of such legendary renown, the history of the design decisions directly related to its construction on site remains largely anecdotal, if not utterly obscured by the so-called ‘spherical solution’, namely the breakdown (or approximation) of the original roof shells into triangular sectors, eventually labelled ‘sails’, belonging to the same sphere. By contrast, the contribution of the contracting side to the engineering of the assembly process and, by extension, the detailed design of the components involved, has thus far frustrated scholarly attention, also due to the scattering of the original documentation. This is particularly so for the work produced by the general contractor for Construction Stage 2, the Australian company Hornibrook, which played a significant role in developing the construction solutions and the casting procedures for the roof shells.

A rich group of items recently discovered by the authors in several locations across the Australian state of New South Wales may now be set to shed important documentary light on the details of such role, and the collaboration it entailed particularly with the structural engineer.

The documents include site notes, new original site images, and a massive corpus of 5,300 drawings issued by the contractor, including construction layouts of the site as well as calculations and execution instructions of the temporary structures used for the erection of the building roof's famous 'sails' (fig. 1). Though technically classifiable as shop drawings, i.e., non-contract production documents describing the manufacturing process leading to the realization of the building [6], Hornibrook's sets betray strong degrees of design integration with the drawings produced by the structural engineer ARUP, which, in several cases, contain explicit references to 'Hornibrook solutions'. If this type of notational citations suggests at least an accredited combination of efforts in the project, scope and magnitude of the shop drawing series reveal the considerable endeavour of the construction company in the conceptual ordering of the physical tasks.
Fig. 1 Hornibrook Ltd, Sydney Opera House, Stage 2. On the left: construction layout indicating the location of the casting yard for the shells’ components and, highlighted in red, the different storage areas. On the right: northern precast segment storage layout used for organizing the rib segments before their erection (NSW State Archive and Records).

2 The formwork system

Among the collection of drawings, 85 of them describe the formwork system developed to build the concrete shells. Examining this lot is interesting because it reveals not only the length of the engineering work on the contractor's side but also the integration of industrial fabrication thinking and *ad-hoc* construction concerns.

To understand the achievements, one must first introduce the problem, which in this case concerns the roof and the form of its main components, also known as the 'sails'. These have been described as a combination of 'side' and 'main' shells, with the latter taking the shape of an ogive vault formed by a series of arches labelled 'ribs'. The dominant geometry describing each half vault is a slice of a sphere with a radius of 75 meters, which gives all the ribs the same curvature and allows them to be notionally divided in concentric and repetitive segments. Each rib is formed by a variable number of segments with a Y-shaped cross section. All ribs start with three solid concrete segments, followed by a fourth one featuring a cylindrical void to reduce its weight, and the remaining ones designed as an open Y, closed at its top by means of precast cross bracings (fig. 2). Moreover, as each half vault feature a fan-like spherical shape all the ribs have a tapering section that increases from bottom (pedestal) to top (ridge). Mutual connection between segments of the same rib was assured by a stabilizing compression force obtained with prestressing cables running along the rib’s radius. As such the result post-tensioning forces were ‘nearly centroidal’ [7] with each rib being self-supporting upon its completion.

Each ogive arch or rib is completed with a special last segment acting as a connector between the rib and the ridge. Like the ribs, also the ridge of the vault is formed by a series of concentric precast elements.

Leaving instrumentally aside all the cast-in situ elements of the system (i.e., pedestal and tripods footings) and its special pieces (i.e., ridges, crowns and warped segments) allows one to focus on the formwork designed and tested by Hornibrook for the production of the rib segments.

As explained in the drawings, each formwork accommodated five contiguous segments. Each segment was separated by a precast bulkhead which, besides working as a formwork diaphragm, also acted as a matrix for the positioning of the spigots and the anchor plates that had to be embedded in each segment. Moreover, to assure the necessary geometrical continuity between segments, the segment last poured in the previous formwork was positioned as first in the following one (fig. 3).
Fig. 2 Explanatory diagrams showing the different types of shells and their components. On the left the typical cross-section of a main shell with the axonometric view of a rib-block with an open Y-shape section.

Formworks were made out of two moulds: an exterior one and an inner one (fig. 4). The form of the exterior one was shaped against the Y cross-section of the ribs. It was divided in two shells that could be closed and opened via a rail sliding system actioned by hydraulic cylinders placed at the base of the shells. The shells, built with a light frame structure in steel studs and plywood lining, were completed with a cast-in-situ curved spine, running along the centre-line of the rib that realized the base form of the Y stem. Once the formwork was stripped from the segment, the central spine acted as temporary support for the piece itself before it got lifted by the crane. For the fabrication of the steel inner forms, Hornibrook designed a special timber jig with two adjustable horizontal arms through which it was possible to set out the interior tapering geometry of each segment, necessary to follow the varying cross section resulting from the discretization of the sphere in slices (fig. 5). Once realized, the inner form needed to be adjusted and modified so as to allow the insertion of pockets and corbels for stressing anchors, bolts and other permanent connections. Original shop drawings show a series of so-called “modification to inside formwork” alternatives, which illustrate and detail the numerous construction variations required or imagined.

Fig. 3 Construction sequence showing the Hornibrook formwork system used to manufacture rib segments with Y-shape cross-section (photographer: Max Dupain and Associates. Records and negative archive: un-commissioned Sydney Opera House construction photographs, 1965-1972. Courtesy: NSW State Library).
Fig. 4 Hornibrook Ltd, Sydney Opera House, Stage 2. Rib Segment Formwork, Section, Frames, Detail, Segments from 1 to 5 (NSW Archive and Records).

Fig. 5 Hornibrook Ltd, Sydney Opera House, Stage 2. Special timber jig with two adjustable arms for moulding the interior formwork according to the tapering of the rib cross-section (NSW Archive and Records).
In synthesis, the drawings for the formwork articulate sets of sophisticated combinatory solutions for attaining the structural form required whilst introducing repetition and flexibility in the manufacturing of the discrete pieces. In order to do so, their producers had to consider the vertical layering of segment sub-pieces across the Y section of the rib as well as the tapered progression of the segments along the curve of the half arch, which was made possible by the introduction of sliding registers into the idea of the form. All this without losing sight of the limited, narrow space available to organise a casting yard around the footprint of the building, in itself demanding a high rate of reuse of the moulds, as well as stockage locations for the segments awaiting erection (fig. 6). Shape, length and functioning of the formwork, in other words, had to respond to architectural ambitions, structural engineering requirements, manufacturing precision and speed, site logistics, and economy of materials.

Fig. 6 The Sydney Opera House construction site (photographer: Max Dupain and Associates. Records and negative archive: un-commissioned Sydney Opera House construction photographs, 1965-1972. Courtesy: NSW State Library).

Such challenges acquire significance against the celebrated 'spherical solution' for the roof, which is by now part of architecture's modern history. On the one hand, the 'spherical solution' allowed for a conceptual macro-discretization of the sails into ribs, and for envisioning the production of the latter through a nearly industrial process. Yet, on the other hand, at the 'segment' scale, it could not foresee and solve all the engineering issues embedded in the very solution, which remained open for the construction of a roof constituted by over 2,400 precast segments, the majority of which required an ad hoc precast bulkhead, precast cross bracing, and specific adjustments to accommodate all the necessary post-tensioning apparatuses.

Such degree of detailing required the structural engineer ARUP to issue 30,000 dimensions to Hornibrook – dimensions that were promptly translated by the contractor into detail drawings often supplemented with data tables indicating variables dimensions and locations of single details. Those dimensions were generated by a system of coordinates based on the spherical configuration which was also at the base of the surveying criteria adopted for controlling both the casting yard (including the formworks) and the erection of the roof [8].

3 Contractor's agency in the project

Even such a short analysis of the construction of the formworks for the structural segments of the sails enables a series of considerations on the work conducted as well as the process that led to it. Firstly, it
shows the enormous amount of product engineering and operational planning that went into the definition of the catalogue of components and their casting procedures. Whilst responding to the building performance requirements set by the architect and the engineer, the general contractor made strategic decisions concerning sub-component geometries and combinations, moulding systems and fabrication sequences, element re-use patterns and bespoke requirements. Type and extent of the documentation produced, together with the photographic records of the operations on site, betrays the significant degree of autonomy enjoyed and exploited to this end. While the geometry of the precast components of the arches suggests differences with the streamlined aesthetics of the architectural surface of the sails, it does respond very well to both the production-related needs for modular yet flexible casting on a difficult site and the extreme complexity embedded in the task of recomposing all the pieces of the three-dimensional structural puzzle.

Hornibrook's successful search for manufacturing efficiency and assembly viability suggests that the elements of interest in the construction of the sails go beyond the definition of their overall form and the methods employed to extrude its surface in layers. Indeed, they include the composition of its discrete precast pieces and the process of manufacturing them. This because it was the set of decisions underpinning such a process that determined not only the layout and the organization of the site but also structured construction operations and quality assurance methods for critical parts of the project and important portions of its duration.

The casting of the formworks thus bears testimony to the existence of 'agency' functions on the general contractor's side, requiring vision and the ability to enforce it. As an inevitable aside, due to space limitations of this paper, it could be important to reflect on the fact that, if Hornibrook's experience and track record to this point of its history had produced a kind of manufacturing shrewdness capable to respond to the challenges thrown at them by the official professional design team, the company's actual ability to do so on the Sydney Opera House was determined contractually, by the provisions explicitly regulating work boundaries and expectations of the builder during Stage 2.

4 Design or translation of intent?
Irrespective of the importance of contracts in enabling critical contributions to project developments, did the work of Hornibrook as described amount to 'design', or did it embody the mere translation of design intent into instructions for production, as per the conventionally accepted nature of shop drawings?

If one looked at the image of the building and the compositional logics of its structural system as a whole, then the answer to the design question would be negative. By servicing a higher order concept - that of the form and the structure of the sails - the contractor's documentation and the work instructed within it would be subordinate to these main ends; as such, they would not constitute design per se. Yet, if one considered design almost etymologically - as "a problem-defining, problem-solving, information-structuring activity that, on the basis of understood conditions and rules, defined specific courses of action" - then the casting of the formworks would attain full design status.

In fact, when sketched in these terms, design activity would not be limited to what definable solely under architecture prescriptions or structural engineering work, but rather enter all the specific dimensions of the building procurement process - including at least site layout, building components production, building erection, and building use and maintenance. Such scenario would shape the idea of both 'building' and 'project' in scholarly useful ways, with 'building' becoming understood as the combined result of the implementation of multiple scope-specific designs; and 'project' indicating the social space where the gradual integration of these designs would occur, following a process of negotiation between objectives internal to each design dimension and objectives related to their integration - very much the case with the work carried out by Hornibrook on the Sydney Opera House [9].

5 Design as a broad construct
Opening the notion of design up in the way just outlined makes it plausible to turn established mental images of construction around and think of the building process, with all its ramifications, as a system of design production independent of corporative schemata - a cycle, that is, within which all the information necessary for the implementation of the building would have to be conceived and either produced or assembled. How this system organized to deliver its product, what logics it followed in doing it, what it would be constrained by, and how many units of production it would consist of would then
become the object of the discussion. Such a conceptual framework would add critical dimensions to the analysis of the design process and its dynamics, certainly by positing the importance of socio-technical diversity within the project team, and with it the relevance of sophisticated actor-networks descriptions across the history of the project [10].

Analytically, the design system of sorts determined through this exercise would be helpful for two reasons. Firstly, because it would provide a proper index of the design challenges that exist within the building process, and a measure of the substantive breadth the design task must gain to respond to them. Secondly, because it would help form a view of the building project not tied a priori to specific actors but rather open to the recording of direct or indirect design contributions, to qualify in relation to the areas of impact. By creating the conditions for isolating and then bringing together the work conducted on disparate design domains by clusters of contributors, such a multi-dimensional view of design could be used as a tool to interrogate project challenges and results, eventually to intervene on the dynamics that led to them.

The authors have a research funding application pending almost exactly on this topic in Sydney. Hopefully, it will be possible to make more than informed guesses on the efficacy of such analytical methods before too long.

Yet, the importance of the difference just articulated, essentially between 'design as product' and 'design as process', can be gauged effectively by returning to the sails of the building and the rhetoric surrounding their creation. While their canonical history celebrates the so-called 'spherical solution' as a stroke of genius on the side of the architect and the engineer, the story of the works put together by the contractor for their fabrication on-site tells a tale of work planning and ingenuity that counterbalances the myth of the 'eureka' moment by highlighting the amount of labour – intellectual as well as physical – required to make Utzon’s great idea materialize (fig. 7).

Without taking anything away from the leap of imagination that led to the solution eventually employed, the actual construction of the sails owes a huge debt to the preparatory design and engineering work by the general contractor. Indeed, the spherical solution generated a series of significant construction chain challenges, from task identification to site planning, system engineering to visualization of decisions, work monitoring to quality control, which were all tackled by the main party 'on the ground'. Hornibrook did overcome the technical issues posed by the fabrication of all the parts required through the production of copious, detailed documentation based on and refined via a long period of prototyping work, which would be difficult to liquidate as mere, although remarkable, construction management. If such documentation will necessarily remain a critical object of analysis and reflection in future studies on the building and the meanders of the technical design process, a provisional conclusion can be attempted on fairly safe grounds: for a building justly considered unique and out of time – and as such worthy of world heritage status [11] – the mundane aspects of its realization and the design challenges

Fig. 7 On the right: The rib formwork system located on the eastern side of the casting yard (photographer: Max Dupain and Associates. Records and negative archive: un-commissioned Sydney Opera House construction photographs, 1965-1972. Courtesy: NSW State Library). On the left: Hornibrook Ltd, loading diagrams for the member of the erection arch (NSW State Archive and Records).
these raised for the industry at the time may well constitute the true gauge of its ‘concrete’ achievements.

Acknowledgements
The authors wish to acknowledge the assistance of members of staff from the NSW State Archive and Records, NSW State Library, Powerhouse Museum Archive and Sydney Opera House.

References
The conceptual design of structures is at the heart of the design process and when the most fundamental and influential decisions are taken for a project. It merges experience, intuition, tradition, site constraints, technical solutions and, above all, the genius and sensitivity of the designers.

The International fib Symposium on the Conceptual Design of Structures 2021 generates a fruitful exchange event for academics and practitioners from engineering, architecture and other disciplines on the topic of the conceptual design of structures. The focus is placed on experiences made particularly during the design process. The discussions reflect how a project emerges, how design decisions are taken, how responsibilities are distributed, how obstacles and constraints are handled, how fundamental design principles are applied and the way the individual members of the design team collaborate.

edited by:
Corentin FIVET,
Pierluigi D’ACUNTO,
Miguel FERNÁNDEZ RUIZ,
Patrick Ole OHLBROCK